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The possibility of applying plane elasticity theory methods to compute the stress concen- 
tration at the surface of a free hole in a thick slab is studied herein. Asymptotic repre- 
sentations of the solution of the tree-dimensional elasticity theory problem for a thick 

slab, obtained in El], are utilized. It is shown that application of plane elasticity theory 
methods for a hole sufficiently remote from the outer contour of the slab is valid. The 

error obtained in the computations of the stress concentration by these methods is esti- 

mated. 

1. Let us consider a homogeneous isotropic slab of thickness 2h, bounded by cylindri- 
cal lateral surface Ii. Let there be a hole in the slab, which is bounded by a cylindrical 

surface T? sufficiently remote from the outer surface T1 as compared with the slab thick- 
ness. Let u denote the major diameter of the hole. The surface T, is loaded by a system 
of stress resultants statically equivalent to zero and symmetric relative to the middle 
plane of the slab (the case of so-called slab compression is studied ; the slab bending 

case has been studied in 123 ),The surface of the hole I’, is free of loading, The plane 
endfaces are also not loaded (Fig. I), As is known, in this case stress con~en~ati~s will 

occur at Tt . 

Methods of computing the stress 
concentrations in such problems by 
using complex variable function the- 
ory and other plane elasticity theory 
methods are quite well developed and 

described in many publications, ( see 

e.g. C31). 

ru It has been shown in [l] that addi- 

tional members in the stresses on the 
loaded lateral surface of a thick slab 
will be quantities of the same order 

Fig. 1 as for the solution of the plane prob- 
lem, i.e. the plane elasticity theory 

solution on the loaded surface does not yield any true picture [4]. Let us examine what 
the situation is if the hole surface is stress-free. 

8, As in Cl], let us introduce nondimensional local coordinates nl, (I], 6 connected with 
the contour I’, , and 9. sz, 6 with I$. The radius of curvature of the outer contour is 
R: (al), and of the inner contour Rt (Q). The direction cosines of the normal for the 
outer contour are l, (s,), mr IQ, and I, (Q, m, (c) for the inner contour. A system of 

stress resultants Nt (+, 61. Ts (a, g, 21 (ri, C) or X,#. f), Y*, @i, F;), &a 08, 0 is given 
on the outer contour= 

1091 
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According to [l], the state of stress within a solid slab bounded by a surface rl loaded 
by such a system of stress resultants, is described by Formulas 

P=--1 

T : _2u 
n,t --Lv 

a 
k=l 
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- 
Y- 1 

1 

As in [I], here 1 denotes the nondimensional slab-thickness parameter li ==h / a; i is 

the imaginary unit, and the bar over the symbol denotes the somplex conjugate. AH the 
remaking notation has been explained in El]. 

The functions of a complex variable ‘p” (t) and \L” fz) which are analytic within Fz, 
are representable by the series 

‘0” (2) = oo’ (2) -+ i.v)r” (s) + h’cq*’ tzl + . . . (2.7) 

$0 (2) = qu* (r) T Lq10 (2) _t h”l12’ (z) + ..- (2.8) 

where vu” (z) and qOo (I) are functions whose boundary values are determined by the 
Kolosov-Muskhelishvili conditions for this problem [S]. The contour values for the re- 

maining functions Cpi” (s) and qio (;), as well as for the functions uyi” (sr) and /h” (~1) 
are determined by the boundary conditions on I’ 1. The functions a”k+ are found from 
some infinite system of linear algebraic equations. 

It is seen from (2.1)-(2.6) that on leaving I‘r for the depth of the slab (% -+ - 3 ) 
the state of stress described by the functions ato (sr and f,,* (a) damp exponentially and 
only the b~harmonic state of stress is propagated deep into slab. It can be assumed that 
the state of stress of the slab at a sufficient distance from the outer contour 1‘1 will be 
determined by Formulas [6f 
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Since a solid slab without a hole. is now considered, then the stresses 

- f {(m2 + &) s2 Icp” -i zi?T + Pt t 

-if@ *- 1 3 “‘-(‘_tt> [(mf ii*)& 

or the stresses 
‘-9 * =r_” =a**=0 (2.13) 

X_’ + iY%’ = - i s2 (cp” + t~+~‘]-22h’o’3~ f-t;2 
( ) 

i&(1')'.2,'=0 

act on the surface I’,. 
(2.14 

But there is actually a hole in the slab, bouded by the surface I‘,, where this surface 
is free of loading. Therefore, I’* must be freed of the stresses a,,:, rk which originate 
there because of the loading on the outer surface’ I s. To do this, it is necessary to super- 
pose a new state of stress corresponding to the solution of the elasticity theory problem 

for an infinite slab with a hole, on the biharmonic state of stress (2.9) acting within the 

slab. It should not alter the stresses on the surface rr, but the values --a,+*, - ?z+, 

should be taken on T, , and it is understood that the endfaces should remain stress-free. 
We call this the reflected state of stress. 

8, Let us construct the reflected state of stress on the basis of the method expounded 
in [l]. Since the exterior problem is hence solved, the potential and vortex states of 
stress should damp out with withdrawal from the edge into the depths of the slab, i.e. as 
n2-* 00. It is easy to prove that the solution of the exterior problem can be obtained 
from the solution of the interior problem constructed in [l], by replacing bl; by --by and 

Pv bY -g+,. Then the reflected state of stress will be 

1 
e,; = - ?i 

{ @a* + ii21 & lo’ t * (cp’,’ + PI + (m2 - iZ2) & [P + “E (cp*)’ + rp*]} - 
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1) Pk (5) + hk% (El] arl* (4 esp 

p=1 

3a* 
+8-h*+ . . .)f$ (.%)] erp (+) +... 

P-1 

a 
6kak (0 as, 

k-1 
[( 

43 

+cz P P ~S(P,?J 1 -&*n*+&n**+... - 

P-1 

flot 
8RI'"t- 2 ds,~ nz d, +***)/,*(%)] exp (-‘$)} +... (3.2) 
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Here q~ (z), $* (L) are functions of a complex variable, analytic outside the contour 
r, and which do not alter the stresses at infinity. They are represented by the series 

cp* (z) = ** 0) + Ml* (2) + A*** (2) + l +* (3.7) 

cp* (2) =g,* (2) + hjP (9 +w** (9 + *** (3.6) 

4, The contour values for the functions Q+ (I) and $i* (2) and the functions Q* (f) 
and .&#(~s) are determined from the boundary conditions on I’, which have the form 

Na (St, i) = - e*‘. T.(sz. D=-T~*. 22 (St. 6) =o (4.1) 
or 

X,(%, Q + iY,,(*, Q = -(XL+ iYK) (4.2) 

According to [l]. the boundary conditions for the functions %*, tpo’ will be 

& lcpo* f : (OO*)’ + 671 = i (C-Y,> + i <Y,>) (4.3) 

where the angular brackets denote mean values with respect to the height. 

Taking account of boundary condition (4.2) and equality (2.14), we obtain the follow- 
ing boundary condition for w* and $a* 

(4.4) 

It is hence seen that the state of stress described by the functions %* and *c* is a plane 
elasticity theory solution which removes stresses produced by the functions wa” and Qo" , 

from the surface of the hole 1,. This state of stress evidently does not change the stresses 
at infinity since (p* and **are analytic functions outside Tr and yield stresses which vanish 
at infinity. We call it the plane reflected state. 

We have the following system of equations to determine the function aL* (5) 
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On the basis of boundary condition (4.4) it is seen that the right sides of the system 
(4.5) vanish. The system (4.5) is such that all the u&,* (aa) m 0 here. 

To determine ff,,.* (s3) we obtain the equation 

f,,’ (Q) = 
a 

-.,T#@(St) r=i, z,.. 
-)L’Pt c 

. 
q=trr > 

(4.7) 

I 

=,a = s l Tm ($2. {I 00s (p,c$d; = 0 (4.8) 
-1 

It hence follows at once that all the ft,* (sJ an 0, 
In the next approximation for the functions W* and 91’ we obtain the boundary con- 

dition 
-& IOr* + +CV+JPj = -&m’;2@2Y+~1 (4.9) 

Let us note that although this boundary condition has the same form as (4.4), the func- 
tions ‘$1, and $1’ will not be the solution of the plane elasticity theory problem since 

the boundary values for the functions ~,‘and $1” do not agree with the Kolosov-Muskhe- 
Iishvili conditions, but depend on the functions aklo, jr,,” on the outer contour Ts. 

For the functions oka*, j,* we find 

f,** (SJ = 

Here the braces { 1 
the approximations 

a dN!ll 
-2! dc, (- t=i ,?,a.. (4.11) 

denote the matrix of the system (4,5), which is constant in all 
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1 1 

=a== (--in& s 91 cos @lb) 4 = 0, z,, = s (- TM*)& (5) dt = 0 
-1 

I -X 

St0 = 
s 

(-u,,,‘)ocos(p,~) dt = 0 (4.12) 
1 -1 

Km,= 
!i 

-1 
~--a,o~la,(t)di;=--_v-l) * (m2 f if,) d+ w+G3+ $7, + 2 

+ (m, - iZ2) *+ (n” + ; (Cpl’Y + 91’) * I (4.13) 

1 

T no = s (- rW,aka,,, ($1 dr = - (v - i) 
sirP&, 

6,~ 
[ 

(Ia - i&I d+ 0Pe80 + s (WY f $F)+ 
-1 

-i-(ts+~J%) dS, d (G?++b*). +**I 
I 

(434) 

It is seen at once from (4.11) and (4.12) that all the j,,* (d =: 0. 
It is seen from an analysis of (4.13) and (4.14) with the boundary conditions (4.4) and 

(4.9) taken into account, that the right sides of the system (4.10) vanish, and then all 

the ati* (a,) ES 0. 
After analogous computations, we obtain the following boundary conditions for Cps’. 

%,‘a a,,** f pa’: 
(US) 

- $ I,, + 

i- (ma - if21 (4.16) 

Here.f,t, Im,, I,,,, are certain constants dependent on the numbers m and t; their 

values are presented in [I]. They are inessential now. 

Therefore f&* (+) and Us* (4) are already nonzero, The subsequent functions 
f:P (6) and emi+ (rt) will also be nonzero for i > 3 . 

6, Let us now write down the stresses on the contour r, of the free hole. They consist 
of the penetrating biharmonic and reflected states of stress 
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i + ((m + il2) -$- Ia” 4 0* + f (9’ -1. V)’ + (5’ + WI + 

+ (ml- &)& IR’f w +fw +w-l- v +v1} + A?u’s(+ 
X L (m2 i- it21 & 2 (cpo + (m2 - il2) & (9’ t V)‘] i 

The relationship (5.4) shows that the stress a,, at points on the unloaded surface of 
a hole I”, has the form uri=&+f,*l+~$,, +.*a (5.7) 

hence, the member a,+, is given by the solution of the corresponding plane problem. 
The first order infinitesimal term in 1 or u s,t is also determined by analytic functions 

fp~~,\p~~ and rpr*,$,*.which do not however agree with the Kolosov-Muskhelishvili func- 

tions since their boundary conditions depend on the function utio(sr). only starting with 
second order terms in A will the functions uAs* (8s) and f p:F (s&describing the additional 
state of stress on the inner contour, enter in the solution. 

The stress T_ will be a second order quantity in ). as compared with the main stress 
characterizing the concentration coefficient Q,~. The stress t in the exact solution 
is zero on the free hole contour, it is also zero in the plane so?t%on by virtue of condi- 
tion (4.4). The stress a, is zero in the plane theory ; in fact it will be a quantity on the 
order of hg as compared with unity. 

Therefore. no matter what characteristics are utilized to calculate the concentration 
coefficient at a free hole, sufficiently remote from the outer contour, the error in 
plane theory in the case of slab compression will be at least of first order magnitude in 
A as compared with the principal value. 

This conclusion differs somewhat from the results obtained in the slab bending case 
@] ; the error of applied theory there is on the order of 3, as compared with unity only 
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in the stress e,*, The applied theory introduces a discrepancy of the same order as the 
quantity being considered in calculating the stress rsrL in the slab bending case. 
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A method is presented for asymptotic integration of equations in the theory of shells 
(convex shells are examined) for the case where the free terms in the equations consist 

of a Dirac delta function or its derivatives. These solutions, which are solutions repre- 
sented by a function of the Green type, correspond to the action of concentrated forces 

or moments on the shell. 
At first the analysis is carried out for one equation and then it is shown how the obtain- 

ed results are extended to the system. 

1. Let us examine the linear differential equation containing the small parameter e: 
which appears in the theory of shells as the relative thickness 

es AI (u;) .+ L (cc) = b (1-i) 

Here RI and t are elliptic differential operators with variable coefficients and highest 
derivatives of orders 2m and 21, m > 1 , respectively. Without any loss we can write 
s = 2 (m - 1). 

In the theory of shells the order of operators,&f and L are equal to 2m = 8 and 2t =4; 
however, all arguments will be carried out for arbitrary m and I. Since the dimension 

of the space n does not have any significance with respect to the presented arguments, 
we shall carry them out for any arbitrary even n {the case of uneven n is examined in 

an analogous manner). 


