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The possibility of applying plane elasticity theory methods to compute the stress concen-
tration at the surface of a free hole in athick slab is studied herein, Asymptotic repre-
sentations of the solution of the three~dimensional elasticity theory problem for 2 thick
slab, obtained in [1}, are utilized, It is shown that application of plane elasticity theory
methods for a hole sufficiently remote from the outer contour of the slab is valid, The
error obtained in the computations of the stress concentration by these methods is esti~
mated,

1, Let us consider a homogeneous isotropic slab of thickness 2k, bounded by cylindri-
cal lateral surface I'). Let there be a hole in the slab, which is bounded by a cylindrical
surface T, sufficiently remote from the outer surface I'y as compared with the slab thick-
ness, Let a denote the major diameter of the hole, The surface I'y is loaded by a system
of stress resultants statically equivalent to zero and symmetric relative to the middle
plane of the slab (the case of so-called slab compression is studied ; the slab bending
case has been studied in [2]),The surface of the hole I', is free of loading, The plane
endfaces are also not loaded (Fig, 1), As is known, in this case stress concentrations will
occur at Ty,

Methods of computing the stress
concentrations in such problems by
using complex variable function the-
ory and other plane elasticity theory
methods are quite well developed and
described in many publications, ( see
e.g. [3]).

It has been shown in [1] that addi-
tional members in the stresses on the
loaded lateral surface of a thick slab
will be quantities of the same order
as for the solution of the plane prob-
lem, i, e, the plane elasticity theory
solution on the loaded surface does not yield any true picture [4]. Let us examine what
the situation is if the hole surface is stress-free,

2, As in [1}, let us introduce nondimensional local coordinates my, &, { connected with
the contour I’y ,and ny, s,  with F,. The radius of curvature of the outer contour is
Ry (8), and of the inner contour Ry (s;). The direction cosines of the normal for the
outer contour are ly (s;), ms (), and Iy (s3), m; (8;) for the inner contour, A system of
stress resultants Nl (‘h ;): Tl (‘lv ;}9 Z! (‘h c) or Xn,(‘b C}: Yn, (‘l! ;)’ zﬂl (‘h C) is given
on the outer contour,
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According to [1), the state of stress within a solid slab bounded by a surface I’y loaded
by such a system of stress resultants, is described by Formulas
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As in [1], here A denotes the nondimensional slab-thickness parameter A ==h / a; i is
the imaginary unit, and the bar over the symbol denotes the somplex conjugate, All the
remaining notation has been explained in [1],

The functions of a complex variable ¢° (z) and ¢° (2} which are analytic within Fy,
are representable by the series

9° (1) = @0 (2) -+ 290° (3) + Mpe® (9 + - @.7)

PO (2) =Po® (3) + A®(2) + RP,° (1) + ... (£.8)
where @y° (z) and yo° (z) are functions whose boundary values are determined by the
Kolosov-Muskhelishvili conditions for this problem [5], The contour values for the re-
maining functions ¢;° (z) and y;° (z), as well as for the functions ax;° (s;)and fpi® (s1)
are determined by the boundary conditions on Ty. The functions a° are found from
some infinite system of linear algebraic equations,

It is seen from (2, 1)—(2, 8) that on leaving I'; for the depth of the slab (7 — — )
the state of stress described by the functions a;° (s; and f»® {51) damp exponentially and
only the biharmonic state of stress is propagated deep into stab, It can be assumed that
the state of stress of the slab at a sufficient distance from the outer contour I3 will be
determined by Formulas [6]
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But there is actually a hole in the slab, bouded by the surface Ty, where this surface
is free of loading, Therefore, Iy must be freed of the suesses ¢, °, ‘t;.’ which originate
there because of the loading on the outer surface I'y. To do this, it is necessary to super-
pose a new state of stress corresponding to the solution of the elasticity theory problem
for an infinite slab with a hole, on the biharmonic state of stress (2, 9) acting within the
slab, It should not alter the stresses on the surface I, but the values -—c,,,", e ‘r; -
should be taken on Iy, and it is understood that the endfaces should remain stress-free,
We call this the reflected state of stress,

8, Let us construct the reflected state of stress on the basis of the method expounded
in [1], Since the exterior problem is hence solved, the potential and vortex states of
stress should damp out with withdrawal from the edge into the depths of the slab, i, e. as
ny —» 00, It is easy to prove that the solution of the exterior problem can be obtained
from the solution of the interior problem constructed in [1], by replacing &, by —9; and
py by —pp. Then the reflected state of stress will be
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Here ¢® (z), $* (2) are functions of a complex variable, analytic outside the contour
Iy and which do not alter the stresses at infinity, They are represented by the series

9* (2) = @* (3) + M (2) + Mgy* (2) + e G.7)

¥* (2) =V¥o® (2) + Mai® (3) + A,° (1) + ... (3-8)

4, The contour values for the functions ¢;* {z) and ¥;* (z) and the functions ai;* (%)
and fpi*(sy) are determined from the boundary conditions on Iy which have the form

a2 at

+,‘;“R;:":’+ )a;- {s3) + 5% 28, (43:‘?‘

N' (Sg, ;) = - cn:' T! (Sg, g) = tu"'“- Z! (Sz, ;) =0 (41)
or
X, (80 D+ iV, (8 D= — (X, + i¥p) (4.2)
According to [1], the boundary conditions for the functions Q% f* will be
75 19+ TR+ BTN = (Kpp) <Y ) 4.3)

where the angular brackets denote mean values with respect to the height,

Taking account of boundary condition (4,2) and equality (2, 14), we obtain the follow-
ing boundary condition for @¢® and $o*

i_.‘..‘- t’_‘T:_d o _: ©} 1 o 01 7

ds’[% - 2 (§o*) |- }®] a‘g;[q’(! + 2 (90°) + $°] {4/

It is hence seen that the state of stress described by the functions o® and §e* is a plane
elasticity theory solution which removes stresses produced by the functions gu° and yo°,

from the surface of the hole I',. This state of stress evidently does not change the stresses

at infinity since ¢* and *are analytic functions outside I, and yield stresses which vanish
at infinity, We call it the plane reflected state,

We have the following system of equations to determine the function a,* (sy)
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On the basis of boundary condition (4.4) it is seen that the right sides of the system
(4. 5) vanish, The system (4, 5) is such that al{ the a,* (5) = 0 here,
To determine fr* (s) we obtain the equation
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L
Ty= S T (s2. J) c08 (Y 43 = 0 (4.8)
-1

It hence follows at once that all the f," {3) = 0.

In the next approximation for the functions g,* and $;* we obtain the boundary con-
dtion ot 2@ 8 = — L (ot T+ 0 “.9)

s 45y

Let us note that although this boundary condition has the same form as (4, 4), the func-
tions ¢4* and ¢,* will not be the solution of the plane elasticity theory problem since
the boundary values for the functions ¢+°and $1° do not agree with the Kolosov-Muskhe~
lishvili conditions, but depend on the functions akf, fp," on the outer contour I,

For the functions ax,* fps* we find

a
L T

., dT
(6,,,.’\1,,“ + 2"?2 Npo + ds':o —_ zm) -

= = 0 S {0 [Ome 8 @0t S 0 + () X
X Z%(El.+;(¢l.)’+¢l‘)]+§%: [(m2+ﬁz) dis;(tpot +2@"".)r +“¢;:) +

+ (e — ily) J-;'; EP+I @0 + W)] - [(12 —im,) g— (®e® + 2 [T + W) +

im0 T (@) w)] L om=t2... (4.10)
ds; J
dN a
frg® () = —Iﬁ%(d_c:l + Ty + IR, Tto) ) t=1,2,... (4.11)

Here the braces { } denote the matrix of the system (4, 5), which is constant in all
the approximations
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It is seen at once from (4, 11) and (4, 12) that all the f,,* (&) = 0.

1t is seen from an analysis of (4, 13) and (4, 14) with the boundary conditions (4, 4) and
(4, 9) taken into account, that the right sides of the system (4, 10) vanish, and then all
the 4,4% (85) = 0.

After analogous computations, we obtain the following boundary conditions for @,*,
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Here ./, Iny» 1y are certain constants dependent on the numbers m and # their
values are presented in [1], They are inessential now,

Therefore f,* (s,) and @,,.* (s,) are already nonzero, The subsequent functions
fti® (8;) and @i* (sy) will also be nonzero for i > 3.

5, Let us now write down the stresses on the contour Iy, of the free hole, They consist
of the penetrating biharmonic and reflected states of stress

Opy = O 0t = — g {(ma i) S 1904 90+ 2@ T O 4 F VI +
a3 8 e T e L3 . o 1 v—i/4

- (ma— i) - [ 5 ) 3 @+ 9+ 9+ 9] = et 2 (-0 x
X [imat ) - TFTY + il g @+ 9] +

2 o
+ -—:—‘— A Z [(v—1) P () + 8oy (D) @y * () + --- =0 6.1
kel



On the error in determining the stress concentration 1099

Tris = Tr, T rn,..‘=—-—3~{('z— imy) -‘L O+ +2@ 9%+ (¥ + 9] +

+ (- im) @O+ @ O ¥+ —
T L omey~ > d e 1 »
- ).20..2.:!— (-—!—"_ s") [(l:_ ’m'.')a':s—z' (9°+9*) + (I.’+ 'm:)m (9° + 9% ] -

Iv—1\ 3
oo
— 2B ST 2 eos (ppl) Fpg® () £ 0 5.2)
a p=1
2 o0
T =Tn; + Tt =— _7:.‘— VAL E 81k (D) ays® (s2) +---=0 53

=1
St ot =20 +9) + (9° @ F e+

+ —-{(ma—r i) (6t + 90+ T T+

- 1
+(’"z’“‘11)-——[('? 17°)+2(‘P + @*) +¢°+¢']\+1a’~ i(?“c')x
x l(mz il -.- @ T T + (mo— ily) —-«p' g% ] +

+2 "‘ Mv—1) 2 Pr Q) ayy® () +-- 5.4)
ke=y
Yoz = fs,zo + T‘g‘z - gg"\’}-’ Z pp?sin (p 1) "?3‘ (s2) +---. (5.5)
r=1
° * _}_ 33 S ] S R 5.6
6, =0;"+ 6,* = o V- EQk(C)am (22 - (0.6)
k=g

The relationship (5.4) shows that the stress g, at points on the unloaded surface of
a hole JIyhas the form Oy, = Tyt A0, + 7»’6, P 5.7

hence, the member s, is given by the solution of the corresponding plane problem,

The first order infinitesimal term in & or o, ; is also determined by analytic functions
1% ¥1° and @1*,¥,1*, which do not however agree with the Kolosov-Muskhelishvili func~
tions since their boundary conditions depend on the function a4, °(#). Only starting with
second order terms in A will the functions a,,* (s,) and f5,* (8),describing the additional
state of stress on the inner contour, enter in the solution,

The stress v, _ will be a second order quantity in 2 as compared with the main stress
characterizing the concentration coefficient S, The stress T, 183 in the exact solution
is zero on the free hole contour, it is also zero m the plane solution by virtue of condi-
tion (4, 4), The stress g, is zero in the plane theory ; in fact it will be a quantity on the
order of A2 as compared with unity,

Therefore, no matter what characteristics are utilized to calculate the concentration
coefficient at a free hole, sufficiently remote from the outer contour, the error in
plane theory in the case of slab compression will be at least of first order magnitude in
A as compared with the principal value,

This conclusion differs somewhat from the results obtained in the slab bending case
(2]; the error of applied theory there is on the order of A as compared with unity only
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in the stress s, . The applied theory introduces a discrepancy of the same order as the
quantity being considered in calculating the stress T, in the slab bending case,
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A method is presented for asymptotic integration of equations in the theory of shells
{convex shells are examined) for the case where the free terms in the equations consist
of a Dirac delta function or its derivatives, These solutions, which are solutions repre~
sented by a function of the Green type, correspond to the action of concentrated forces
or moments on the shell,

At first the analysis is carried out for one equation and then it is shown how the obtain-
ed results are extended to the system,

1, Let us examine the linear differential equation containing the small parameter &
which appears in the theory of shells as the relative thickness
S Mw +L@w)=2 (1.1)

Here M and L are elliptic differential operators with variable coefficients and highest
derivatives of orders 2m and 2I, m > I ,respectively, Without any loss we can write
s=2(m— 1.

In the theory of shells the order of operators' M and L are equal to 2m = 8 and 21 =4;
however, all arguments will be carried out for arbitrary m and 4 Since the dimension
of the space n does not have any significance with respect to the presented arguments,
we shall carry them out for any arbitrary even n {the case of uneven » is examined in
an analogous manner),



